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SUMMARY

As is well known, the goodness-of-fit problem can be reduced, through a
probability integral transformation, to testing randomness or uniformity on
the interval [0, 1]. Among tests based symmetrically on the m-step spacings
(m > 1), a generalized Greenwood statistic based on the sum of squares of
the spacings is known to be locally most powerful. On the other hand, one
may consider a x? test statistic with an expected frequency of m in each
cell, which is again locally most powerful among tests based symmetrically
on the observed frequencies. This comparison is justified since, while the
Greenwood test compares the observed and expected cell lengths, holding
the observed number in each cell to m, the x* test compares the observed
and expected frequencies, holding the expected number in each cell to m.

Y considering a suitable sequence of alternatives, we compare the asymp-
lotic relative efficiencies of these two tests as well as a third entropy-type
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test based on the m-step spacings. These results generalize some earlie,
work of the authors (Jammalamadaka and Tiwari, 1985).

1. INTRODUCTION

Let X;, X,,..., X,_, be independent random variables (r.v.) with a cop,.
mon continuous distribution function F. The goodness-of-fit problem of
testing whether a specified distribution generated the observations can p,
reduced to testing if the observations have a uniform distribution, throy gh
the probability integral transformation. Thus we may (and shall) assume,
without any loss of generality, that the support of F is [0,1] and that lhe
null hypothesis of interest is

HO: f(x) = 1’ X & [0’1] (11)

where f denotes the probability density function. One classical approach g
to use the x? procedure. Suppose we have N classes

i—1 i 1 N
( N |Nl 1=1,...,

and O, denotes the observed frequency in the ith class. The x? statistic is

given by
- % Z (o %)
= %( gj 0,.2) —n (1.2)

For reasons that will become clear soon, we shall be interested in the case
where n, N = oo such that the expected frequency in each class n/N — m,
0<m< co.

An alternative approach to testing (1.1) is to construct tests based on
spacings. Let { X{} denote the order statistics, with the notation Xg =0
and X/ =1+ X/_, for k > n, circularly for convenience. Then the non-
overlapping (or disjoint) m-step spacings (1 < m < n) are defined by

DT =X}, — (k=1y-m» k=1,...,[n/m] (1.3)

where [x] denotes the integer part of x. Since we are concerned with
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totic results as n — oo with m fixed, there is no loss of generality in
85)’mﬂug [n/m] is an integer N. When m = 1, { D{"} are simply { D} are
gssu” one-step or simple spacings. The order statistics as well as the
ings should have an extra subscript n, which we suppress throughout
hapter for notational simplicity. Tests based on simple spacings, for
odness-of-fit problem, have been considered in the literature. See, for
the ce, Pyke (1965), Rao and Sethuraman (1975), and references con-
| there. Del Pino (1979), following the approach taken by Rao and
1311 ;raman (1975), studies tests based on disjoint m spacings defined in
(51613;‘ Wwe consider two such tests, namely,

s
{his ©

1 X 5
V;'(m) - Z (nDi~rn) (14)
N i=1

and an entropy-type statistic
1
N5

™M=

B = & 5 (a0 log(nDL7) (1)

The statistic in (1.4) is a generalization of the so-called Greenwood statistic
see, €., Rao and Kuo (1984)], and the one in (1.5) for the special case
m =1 has been considered earlier by Gebert and Kale (1969) and more
recently by Jammalamadaka and Tiwari (1985). The statistic V(™ may be
seen as being equivalent to

2

r-m

1
— ¥ [m - nD]?
m =1

which in this form may be thought of as the dual of the x? statistic (1.2)
with the observed frequencies in each cell (of length D{™)) being fixed at m.

To compare the asymptotic relative efficiencies of these three tests, we
need to consider their distribution theory under the following sequence of
alternatives:

I(x)

"1/4 2

A f(x)=1+ 0<xx<1 (1.6)
"’hfﬁfe I(+) is square-integrable and continuously differentiable on [0, 1].
This sequence of alternatives has been considered before. See, for instance,
R0 and Sethuraman (1975) and Del Pino (1979).
Under the sequence of alternatives (1.6), the asymptotic normality of the
T€¢ Statistics is established in Section 2 and comparison of asymptotic
#fiiciencies made in Section 3.
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2. ASYMPTOTIC NORMALITY OF V™, E(™, AND T,

To establish the asymptotic normality of V(™ and E{™, we use
following result of Del Pino (1979). See also Rao and Kuo (1984). y
Theorem 2.1 (Del Pino, 1979). Under the alternatives (1.6), if h(-) ig

function satisfying some regularity conditions (Del Pino, 1979) and § isz

Gamma(m, 1) random variable with density s™ 'e™*/T'm for s > 0, they

N7V Z [h(nDE) - ER(S)] = N (o)

where

b= (j:lz(t) dt)COV(h(S),(S —m—1)")/2/m (21

and
o2 = Var(h(S)) — Cov2(n(S),S)/m (22)
cial case of this with h(x) = x? has already

The statistic ¥,{™ as a spe
9) and Rao and Kuo (1984), and we state the

been studied by Del Pino (197
needed result.
Theorem 2.2. Under the sequence of alternatives (1.6),

able

the random vari-

R (7 — m(m + 1)) > N(ps,0f)

where

4y =y - (m + 1)([1120) dt) and o2 =2m(m+1)
0
Now we consider E{™ in (1.8) and establish the following

Theorem 2.3. Under the sequence of alternatives (1.6), the random vari-

able

1 1
| \W[E,S’")—m(1+-2'+"'+7M‘—Y)]iN(M2,022)

by = J—f—( [ a)
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and
a? m 1
022=m(m+1){—~2-3 - m
6 j=1J

(Here Y is the Eiiler constant, 0.5772....)

proof. Tt can be checked that the function h(x) = x logx satisfies the
simple set of sufficient conditions [see Eq. (3.3), p. 1061, of Del Pino
(1979)], Then to apply Theorem 2.1, we need to evaluate the centering
constant E(S log S) and the asymptotic mean and variance in (2.1) and
1.2) for this case. Evaluation of the required integrals turns out to be quite

complex but manageable. For instance
1 1 ® —x m.,
E(SlogS _ﬁn--/(;e - x" - log x - dx

1

o0
{mf e *-x" 1. logx-dx+ I‘m}
m 0

T
1 1
=m 1+—+---+——y}
2 m
For getting p, we need
Cov(Slog S, (S —m— 1)%)
= E{S?log S + (m +1)*Slog S — 2(m + 1)S2log S }

—E(Slog S)E(S? + (m + 1)* = 2(m + 1)S)

={(m+2)(m+1)m(1+%+---+m12—y)

5 i 1
+(m+ 1) mll+ -+ +——v
2 m

2(m + 1) L4 st !
o " 2 m+1 i

_m{1+%+ +-’17—l—y}{(m+1)m+(m+1)2—2(m+1)m}

=m

and hence p, follows from (2.1). Similarly, one can show that the expres-
slon (2.2) for o2 reduces to the one given in Theorem 2.3. H
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From these two theorems, 2.2 and 2.3, one obtains the asymptotic nul]
distributions under (1.1) by setting /(x) = 0 as well as the special case for
simple spacings by taking m = 1.

Finally, we consider the asymptotic distribution of the x? statistic T,
in (1.2) under the alternatives (1.6). For this, we use Theorem 2.1 of Holsy
and Rao (1980, p. 25) on the asymptotic distribution of statistics based oy
multinomial frequencies. The proof of the following result is essential|
similar to that of Theorem 2.7 of Jammalamadaka and Tiwari (1985) and i
omitted.

Theorem 2.4. Under the alternatives (1.6), the random variable

N‘I/Z{T,,w e N(l = %folﬂ(t) dt)}

has an asymptotic normal distribution with mean 0 and variance 2 g
n, N - oo such that n/N — m, finite.

3. ASYMPTOTIC RELATIVE EFFICIENCIES OF V™, E(™, AND T3
The Pitman asymptotic relative efficiency (ARE) of a test relative to
another is defined to be the limit of the inverse ratio of sample sizes
required to obtain the same limiting power at a sequence of alternatives
converging to the null. Under certain regularity conditions [see, for exam-
ple, Fraser (1957)], which include a condition about the type of alternatives,
asymptotic normality of the test statistic under a sequence of alternatives,
etc., the “efficacy” of a test statistic is given by (p3/0*), where p, and o
are the mean and variance of the limiting normal distribution under the
sequence of alternatives, when the test statistic has been normalized to have
a limiting standard normal distribution under the hypothesis. In such a
situation, the ARE of one test with respect to another is simply the ratio of
their efficacies.
From Theorem 2.2, the efficacy of the test statistic V(" is

_om(m + DA ar)’
- 4m*(m + 1)°

Eft(v")

- (m+1)2 . ([)llz(t) dt)4
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gimilarly from Theorem 2.3, the efficacy of E{™ is

m( f312(1) ar)"*
16{m(m + 1)[%2 -2 -17] - m}

J
_ (Ja12(¢) ar) | (32)

m? 1 ’
16{(m + 1) ?—Z;’Ll? -1

And finally from Theorem 2.4, the efficacy of the x? statistic T,, y is

Eff(T, ) = T;(folll(t) dt)4 (3.3)

gince all these efficacies depend on the alternatives only through the
multiplying constant ( [¢7%(¢) dt)*, it makes the comparison easy. It is clear
that 7. based on the sum of squares of disjoint m spacings is superior to
the x> statistic or the entropy-type statistic E{"™. Also, the test based on
E!™ is asymptotically more efficient than the x? statistic with expected
frequency of m in each cell. Thus spacings tests seem preferable to
comparable x? procedures. One can make a table of the relative efficiencies
of these three tests using (3.1), (3.2), and (3.3) for various values of m.
These conclusions agree with the relative ordering obtained earlier by the
authors (Jammalamadaka and Tiwari, 1985) for the case m = 1.

Eff(E.f'"’) . 2
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